При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Укажите номер рисунка, на котором изображен равнобедренный треугольник.
Выразите 737 см 8 мм в метрах с точностью до сотых.
Среди точек
выберите ту, которая принадлежит графику функции, изображённому на рисунке:
Найдите значение выражения
Из точки А к окружности проведены касательные AB и АС и секущая AM, проходящая через центр окружности О. Точки В, С, M лежат на окружности (см. рис.). Найдите величину угла AOB, если
На координатной плоскости изображен параллелограмм ABCD с вершинами в узлах сетки (см.рис.). Длина диагонали AC параллелограмма равна:
Найдите площадь фигуры, изображенной на рисунке.
Среди данных утверждений укажите номер верного.
Площадь круга равна Диаметр этого круга равен:
Результат упрощения выражения при −1 < x < 1 имеет вид:
Найдите значение выражения
Упростите выражение
Прямая a, параллельная плоскости α, находится от нее на расстоянии 6. Через прямую a проведена плоскость β, пересекающая плоскость α по прямой b и образующая с ней угол 60°. Найдите площадь четырехугольника ABCD, если A и B — такие точки прямой a, что AB = 4, а C и D — такие точки прямой b, что CD = 3.
Из пунктов A и B, расстояние между которыми 190 км, одновременно навстречу друг другу выехали два автомобиля с постоянными и неравными скоростями: из пункта A — со скоростью a км/ч, из пункта B — со скоростью b км/ч. Через некоторое время автомобили встретились. Составьте выражение, определяющее расстояние (в километрах) от пункта A до места встречи автомобилей.
Корень уравнения равен:
Найдите сумму наименьшего и наибольшего целых решений двойного неравенства
График функции, заданной формулой y = kx + b, симметричен относительно начала координат и проходит через точку A (2; 10). Значение выражения k + b равно:
Высоты остроугольного равнобедренного треугольника ABC (AB = BC) пересекаются в точке O. Если высота AD = 15 и AO = 10, то длина стороны AC равна:
Если в правильной четырехугольной пирамиде высота равна 4, а площадь диагонального сечения равна 12, то ее объем равен ...
Ответ:
Найдите произведение большего корня на количество корней уравнения
Ответ:
В равнобедренную трапецию, площадь которой равна вписана окружность. Сумма двух углов трапеции равна 60°. Найдите периметр трапеции.
Ответ:
Найдите сумму целых решений неравенства
Ответ:
Найдите произведение корней уравнения
Ответ:
Найдите
где
— абсциссы точек пересечения параболы и горизонтальной прямой (см.рис.).
Ответ:
Найдите площадь боковой поверхности правильной треугольной пирамиды, если длина биссектрисы ее основания равна и плоский угол при вершине
Ответ:
Найдите сумму корней уравнения
Ответ:
Найдите сумму целых решений неравенства
Ответ:
Из точки А проведены к окружности радиусом касательная AB (B — точка касания) и секущая, проходящая через центр окружности и пересекающая ее в точках D и C (AD < AC). Найдите площадь S треугольника ABC, если длина отрезка AC в 3 раза больше длины отрезка касательной. В ответ запишите значение выражения 15S.
Ответ:
Точка A движется по периметру треугольника KMP. Точки K1, M1, P1 лежат на медианах треугольника KMP и делят их в отношении 11 : 1, считая от вершин. По периметру треугольника K1M1P1 движется точка B со скоростью, в шесть раз большей, чем скорость точки A. Сколько раз точка B обойдет по периметру треугольник K1M1P1 за то время, за которое точка A два раза обойдет по периметру треугольник KMP?
Ответ:
Найдите произведение корней уравнения
Ответ: